Affiliation:
1. Waseda University, Japan
Abstract
<p style='text-indent:20px;'>Consider the chemotaxis–Navier–Stokes equations on a bounded convex domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega \subset \mathbb{R}^3 $\end{document}</tex-math></inline-formula>, where the boundary <inline-formula><tex-math id="M2">\begin{document}$ \partial \Omega $\end{document}</tex-math></inline-formula> of <inline-formula><tex-math id="M3">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is not necessarily smooth. It is shown that this system admits a unique strong <inline-formula><tex-math id="M4">\begin{document}$ 2 \pi $\end{document}</tex-math></inline-formula>-periodic solution provided that given <inline-formula><tex-math id="M5">\begin{document}$ 2 \pi $\end{document}</tex-math></inline-formula>-periodic forcing functions are sufficiently small in their natural norm. The result may extend to general cases <inline-formula><tex-math id="M6">\begin{document}$ \Omega \subset \mathbb{R}^d $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ d \ge 2 $\end{document}</tex-math></inline-formula>, if one additionally assumes that <inline-formula><tex-math id="M8">\begin{document}$ \partial \Omega $\end{document}</tex-math></inline-formula> is of class <inline-formula><tex-math id="M9">\begin{document}$ C^3 $\end{document}</tex-math></inline-formula>. The nonnegativity of solutions is also discussed.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference21 articles.
1. W. Arendt, S. Bu.The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math. Z., 240 (2002), 311-343.
2. R. M. Brown, Z. Shen.Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995), 1183-1206.
3. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.
4. M. Hieber, K. Klaus, and C. Stinner, The Keller-Segel system on bounded convex domains in critical spaces, Partial Differential Equations and Applications, 2 (2021), Paper No. 38, 14 pp.
5. M. Hieber, C. Stinner.Strong time periodic solutions to Keller-Segel systems: An approach by the quasilinear Arendt-Bu theorem, J. Differential Equations, 269 (2020), 1636-1655.