Author:
Wang Kaizhi,Wang Lin,Yan Jun
Abstract
<p style='text-indent:20px;'>In this paper, we continue to develop Aubry-Mather and weak KAM theories for contact Hamiltonian systems <inline-formula><tex-math id="M1">\begin{document}$ H(x,u,p) $\end{document}</tex-math></inline-formula> with certain dependence on the contact variable <inline-formula><tex-math id="M2">\begin{document}$ u $\end{document}</tex-math></inline-formula>. For the Lipschitz dependence case, we obtain some properties of the Mañé set. For the non-decreasing case, we provide some information on the Aubry set, such as the comparison property, graph property and a partially ordered relation for the collection of all projected Aubry sets with respect to backward weak KAM solutions. Moreover, we find a new flow-invariant set <inline-formula><tex-math id="M3">\begin{document}$ \tilde{\mathcal{S}}_s $\end{document}</tex-math></inline-formula> consists of <i>strongly</i> static orbits, which coincides with the Aubry set <inline-formula><tex-math id="M4">\begin{document}$ \tilde{\mathcal{A}} $\end{document}</tex-math></inline-formula> in classical Hamiltonian systems. Nevertheless, a class of examples are constructed to show <inline-formula><tex-math id="M5">\begin{document}$ \tilde{\mathcal{S}}_s\subsetneqq\tilde{\mathcal{A}} $\end{document}</tex-math></inline-formula> in the contact case. As their applications, we find some new phenomena appear even if the strictly increasing dependence of <inline-formula><tex-math id="M6">\begin{document}$ H $\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id="M7">\begin{document}$ u $\end{document}</tex-math></inline-formula> fails at only one point, and we show that there is a difference for the vanishing discount problem from the negative direction between the <i>minimal</i> viscosity solution and <i>non-minimal</i> ones.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献