Affiliation:
1. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China
Abstract
<p style='text-indent:20px;'>In this paper we are concerned with the existence of invariant curves for almost periodic reversible mappings with higher order degeneracy of the twist condition. In the proof we use a new variant of the KAM theory, containing an artificial parameter <inline-formula><tex-math id="M1">\begin{document}$ q, 0<q<1 $\end{document}</tex-math></inline-formula>, which makes the steps of the KAM iteration infinitely small in the speed of function <inline-formula><tex-math id="M2">\begin{document}$ q^n \varepsilon, $\end{document}</tex-math></inline-formula> rather than super exponential function.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference38 articles.
1. L. Carbajal, D. del-Castillo-Negrete, J. J. Martinell.Dynamics and transport in mean-field coupled, many degrees-of-freedom, area-preserving nontwist maps, Chaos, 22 (2012), 013137.
2. D. del-Castillo-Negrete, Dynamics and Transport in Rotating Fluids and Transition to Chaos in Area Preserving Nontwist Maps, Ph.D thesis, The University of Texas, Austin, (1994).
3. D. del-Castillo-Negrete, J. M. Greene, P. J. Morrison.Area preserving nontwist maps: Periodic orbits and transition to chaos, Physica D, 91 (1996), 1-23.
4. D. del-Castillo-Negrete, J. M. Greene, P. J. Morrison.Renormalization and transition to chaos in area preserving nontwist maps, Physica D, 100 (1997), 311-329.
5. A. Delshams, R. de la Llave.KAM theory and a partial justification of Greene's criterion for nontwist maps, SIAM J. Math. Anal., 31 (2000), 1235-1269.