Author:
Yan Wei,Zhang Yimin,Li Yongsheng,Duan Jinqiao
Abstract
<p style='text-indent:20px;'>We consider the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili (RMKP) equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \partial_{x}\left(u_{t}-\beta\partial_{x}^{3}u +\partial_{x}(u^{2})\right)+\partial_{y}^{2}u-\gamma u = 0 \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in the anisotropic Sobolev spaces <inline-formula><tex-math id="M1">\begin{document}$ H^{s_{1},s_{2}}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id="M2">\begin{document}$ \beta <0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \gamma >0, $\end{document}</tex-math></inline-formula> we prove that the Cauchy problem is locally well-posed in <inline-formula><tex-math id="M4">\begin{document}$ H^{s_{1}, s_{2}}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M5">\begin{document}$ s_{1}>-\frac{1}{2} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ s_{2}\geq 0 $\end{document}</tex-math></inline-formula>. Our result considerably improves the Theorem 1.4 of R. M. Chen, Y. Liu, P. Z. Zhang(Transactions of the American Mathematical Society, 364(2012), 3395–3425.). The key idea is that we divide the frequency space into regular region and singular region. We further prove that the Cauchy problem for RMKP equation is ill-posed in <inline-formula><tex-math id="M7">\begin{document}$ H^{s_{1},0}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M8">\begin{document}$ s_{1}<-\frac{1}{2} $\end{document}</tex-math></inline-formula> in the sense that the flow map associated to the rotation-modified Kadomtsev-Petviashvili is not <inline-formula><tex-math id="M9">\begin{document}$ C^{3} $\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id="M10">\begin{document}$ \beta <0,\gamma >0, $\end{document}</tex-math></inline-formula> by using the <inline-formula><tex-math id="M11">\begin{document}$ U^{p} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M12">\begin{document}$ V^{p} $\end{document}</tex-math></inline-formula> spaces, we prove that the Cauchy problem is locally well-posed in <inline-formula><tex-math id="M13">\begin{document}$ H^{-\frac{1}{2},0}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference39 articles.
1. L. A. Abramyan, Y. A. Stepanyants.The structure of two-dimensional solitons in media with anomalously small dispersion, Sov. Phys. JETP., 61 (1985), 963-966.
2. M. Ben-Artzi, J. C. Saut.Uniform decay estimates for a class of oscillatory integrals and applications, Diff. Int. Eqns., 12 (1999), 137-145.
3. J. Bourgain.Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II: The KdV equation, Geom. Funct. Anal., 3 (1993), 209-262.
4. J. Bourgain.On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341.
5. R. M. Chen, V. Hur, Y. Liu.Solitary waves of the rotation-modified Kadomtsev-Petviashvili equation, Nonlinearity, 21 (2008), 2949-2979.