Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces

Author:

Yan Wei,Zhang Yimin,Li Yongsheng,Duan Jinqiao

Abstract

<p style='text-indent:20px;'>We consider the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili (RMKP) equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \partial_{x}\left(u_{t}-\beta\partial_{x}^{3}u +\partial_{x}(u^{2})\right)+\partial_{y}^{2}u-\gamma u = 0 \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in the anisotropic Sobolev spaces <inline-formula><tex-math id="M1">\begin{document}$ H^{s_{1},s_{2}}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id="M2">\begin{document}$ \beta &lt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \gamma &gt;0, $\end{document}</tex-math></inline-formula> we prove that the Cauchy problem is locally well-posed in <inline-formula><tex-math id="M4">\begin{document}$ H^{s_{1}, s_{2}}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M5">\begin{document}$ s_{1}&gt;-\frac{1}{2} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ s_{2}\geq 0 $\end{document}</tex-math></inline-formula>. Our result considerably improves the Theorem 1.4 of R. M. Chen, Y. Liu, P. Z. Zhang(Transactions of the American Mathematical Society, 364(2012), 3395–3425.). The key idea is that we divide the frequency space into regular region and singular region. We further prove that the Cauchy problem for RMKP equation is ill-posed in <inline-formula><tex-math id="M7">\begin{document}$ H^{s_{1},0}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M8">\begin{document}$ s_{1}&lt;-\frac{1}{2} $\end{document}</tex-math></inline-formula> in the sense that the flow map associated to the rotation-modified Kadomtsev-Petviashvili is not <inline-formula><tex-math id="M9">\begin{document}$ C^{3} $\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id="M10">\begin{document}$ \beta &lt;0,\gamma &gt;0, $\end{document}</tex-math></inline-formula> by using the <inline-formula><tex-math id="M11">\begin{document}$ U^{p} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M12">\begin{document}$ V^{p} $\end{document}</tex-math></inline-formula> spaces, we prove that the Cauchy problem is locally well-posed in <inline-formula><tex-math id="M13">\begin{document}$ H^{-\frac{1}{2},0}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference39 articles.

1. L. A. Abramyan, Y. A. Stepanyants.The structure of two-dimensional solitons in media with anomalously small dispersion, Sov. Phys. JETP., 61 (1985), 963-966.

2. M. Ben-Artzi, J. C. Saut.Uniform decay estimates for a class of oscillatory integrals and applications, Diff. Int. Eqns., 12 (1999), 137-145.

3. J. Bourgain.Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II: The KdV equation, Geom. Funct. Anal., 3 (1993), 209-262.

4. J. Bourgain.On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341.

5. R. M. Chen, V. Hur, Y. Liu.Solitary waves of the rotation-modified Kadomtsev-Petviashvili equation, Nonlinearity, 21 (2008), 2949-2979.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3