Author:
Feltrin Guglielmo,Sovrano Elisa,Tellini Andrea
Abstract
<p style='text-indent:20px;'>We study the second-order boundary value problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{cases}\, -u'' = a_{\lambda,\mu}(t) \, u^{2}(1-u), & t\in(0,1), \\\, u'(0) = 0, \quad u'(1) = 0,\end{cases} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ a_{\lambda,\mu} $\end{document}</tex-math></inline-formula> is a step-wise indefinite weight function, precisely <inline-formula><tex-math id="M2">\begin{document}$ a_{\lambda,\mu}\equiv\lambda $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M3">\begin{document}$ [0,\sigma]\cup[1-\sigma,1] $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ a_{\lambda,\mu}\equiv-\mu $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M5">\begin{document}$ (\sigma,1-\sigma) $\end{document}</tex-math></inline-formula>, for some <inline-formula><tex-math id="M6">\begin{document}$ \sigma\in\left(0,\frac{1}{2}\right) $\end{document}</tex-math></inline-formula>, with <inline-formula><tex-math id="M7">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> positive real parameters. We investigate the topological structure of the set of positive solutions which lie in <inline-formula><tex-math id="M9">\begin{document}$ (0,1) $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M10">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M11">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> vary. Depending on <inline-formula><tex-math id="M12">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and based on a phase-plane analysis and on time-mapping estimates, our findings lead to three different (from the topological point of view) global bifurcation diagrams of the solutions in terms of the parameter <inline-formula><tex-math id="M13">\begin{document}$ \mu $\end{document}</tex-math></inline-formula>. Finally, for the first time in the literature, a qualitative bifurcation diagram concerning the number of solutions in the <inline-formula><tex-math id="M14">\begin{document}$ (\lambda,\mu) $\end{document}</tex-math></inline-formula>-plane is depicted. The analyzed Neumann problem has an application in the analysis of stationary solutions to reaction-diffusion equations in population genetics driven by migration and selection.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference26 articles.
1. A. Boscaggin, G. Feltrin, E. Sovrano.High multiplicity and chaos for an indefinite problem arising from genetic models, Adv. Nonlinear Stud., 20 (2020), 675-699.
2. K. J. Brown, P. Hess.Stability and uniqueness of positive solutions for a semi-linear elliptic boundary value problem, Differential Integral Equations, 3 (1990), 201-207.
3. G. Feltrin, Positive Solutions to Indefinite Problems, A Topological Approach, Frontiers in Mathematics, Birkhäuser/Springer, Cham, 2018.
4. G. Feltrin and P. Gidoni, Multiplicity of clines for systems of indefinite differential equations arising from a multilocus population genetics model, Nonlinear Anal. Real World Appl., 54 (2020), 103108.
5. G. Feltrin, E. Sovrano.An indefinite nonlinear problem in population dynamics: High multiplicity of positive solutions, Nonlinearity, 31 (2018), 4137-4161.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献