Characterizing entropy dimensions of minimal mutidimensional subshifts of finite type

Author:

Gangloff Silvère

Abstract

<p style='text-indent:20px;'>In this text I study the asymptotics of the complexity function of <i>minimal</i> multidimensional subshifts of finite type through their entropy dimension, a topological invariant that has been introduced in order to study zero entropy dynamical systems. Following a recent trend in symbolic dynamics I approach this using concepts from computability theory. In particular it is known [<xref ref-type="bibr" rid="b12">12</xref>] that the possible values of entropy dimension for d-dimensional subshifts of finite type are the <inline-formula><tex-math id="M1">\begin{document}$ \Delta_2 $\end{document}</tex-math></inline-formula>-computable numbers in <inline-formula><tex-math id="M2">\begin{document}$ [0, d] $\end{document}</tex-math></inline-formula>. The kind of constructions that underlies this result is however quite complex and minimality has been considered thus far as hard to achieve with it. In this text I prove that this is possible and use the construction principles that I developped in order to prove (in principle) that for all <inline-formula><tex-math id="M3">\begin{document}$ d \ge 2 $\end{document}</tex-math></inline-formula> the possible values for entropy dimensions of <inline-formula><tex-math id="M4">\begin{document}$ d $\end{document}</tex-math></inline-formula>-dimensional SFT are the <inline-formula><tex-math id="M5">\begin{document}$ \Delta_2 $\end{document}</tex-math></inline-formula>-computable numbers in <inline-formula><tex-math id="M6">\begin{document}$ [0, d-1] $\end{document}</tex-math></inline-formula>. In the present text I prove formally this result for <inline-formula><tex-math id="M7">\begin{document}$ d = 3 $\end{document}</tex-math></inline-formula>. Although the result for other dimensions does not follow directly, it is enough to understand this construction to see that it is possible to reproduce it in higher dimensions (I chose dimension three for optimality in terms of exposition). The case <inline-formula><tex-math id="M8">\begin{document}$ d = 2 $\end{document}</tex-math></inline-formula> requires some substantial changes to be made in order to adapt the construction that are not discussed here.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference16 articles.

1. N. Aubrun, M. Sablik.Multidimensional effective S-adic subshift are sofic, Unif. Distrib. Theory, 9 (2014), 7-29.

2. A. Ballier, Propriétés Structurelles, Combinatoires et Logiques des Pavages, PhD Thesis, Aix-Marseille Université, 2009.

3. B. Durand, A. Romashchenko.On the expressive power of quasiperiodic SFT, 42nd International Symposium on Mathematical Foundations of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 83 (2017), 1-14.

4. B. Durand, L. A. Levin, A. Shen.Complex tilings, J. Symbolic Logic, 73 (2008), 593-613.

5. S. Gangloff and M. Sablik, Quantified block gluing, aperiodicity and entropy of multidimensional SFT, Journal d'Analyse Mathématique.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3