Abstract
<p style='text-indent:20px;'>In this paper, we prove a symmetric property for the indices for symplectic paths in the enhanced common index jump theorem (cf. Theorem 3.5 in [<xref ref-type="bibr" rid="b6">6</xref>]). As an application of this property, we prove that on every compact Finsler manifold <inline-formula><tex-math id="M1">\begin{document}$ (M, \, F) $\end{document}</tex-math></inline-formula> with reversibility <inline-formula><tex-math id="M2">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and flag curvature <inline-formula><tex-math id="M3">\begin{document}$ K $\end{document}</tex-math></inline-formula> satisfying <inline-formula><tex-math id="M4">\begin{document}$ \left(\frac{\lambda}{\lambda+1}\right)^2<K\le 1 $\end{document}</tex-math></inline-formula>, there exist two elliptic closed geodesics whose linearized Poincaré map has an eigenvalue of the form <inline-formula><tex-math id="M5">\begin{document}$ e^{\sqrt {-1}\theta} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M6">\begin{document}$ \frac{\theta}{\pi}\notin{\bf Q} $\end{document}</tex-math></inline-formula> provided the number of closed geodesics on <inline-formula><tex-math id="M7">\begin{document}$ M $\end{document}</tex-math></inline-formula> is finite.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献