Author:
Arratia Juan,Pereira Denilson,Ubilla Pedro
Abstract
<p style='text-indent:20px;'>We prove the existence of a bounded positive solution of the following elliptic system involving Schrödinger operators</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{ \begin{array}{cll} -\Delta u+V_{1}(x)u = \lambda\rho_{1}(x)(u+1)^{r}(v+1)^{p}&\mbox{ in }&\mathbb{R}^{N}\\ -\Delta v+V_{2}(x)v = \mu\rho_{2}(x)(u+1)^{q}(v+1)^{s}&\mbox{ in }&\mathbb{R}^{N},\\ u(x),v(x)\to 0& \mbox{ as}&|x|\to\infty \end{array} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ p,q,r,s\geq0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ V_{i} $\end{document}</tex-math></inline-formula> is a nonnegative vanishing potential, and <inline-formula><tex-math id="M3">\begin{document}$ \rho_{i} $\end{document}</tex-math></inline-formula> has the property <inline-formula><tex-math id="M4">\begin{document}$ (\mathrm{H}) $\end{document}</tex-math></inline-formula> introduced by Brezis and Kamin [<xref ref-type="bibr" rid="b4">4</xref>].As in that celebrated work we will prove that for every <inline-formula><tex-math id="M5">\begin{document}$ R> 0 $\end{document}</tex-math></inline-formula> there is a solution <inline-formula><tex-math id="M6">\begin{document}$ (u_R, v_R) $\end{document}</tex-math></inline-formula> defined on the ball of radius <inline-formula><tex-math id="M7">\begin{document}$ R $\end{document}</tex-math></inline-formula> centered at the origin. Then, we will show that this sequence of solutions tends to a bounded solution of the previous system when <inline-formula><tex-math id="M8">\begin{document}$ R $\end{document}</tex-math></inline-formula> tends to infinity. Furthermore, by imposing some restrictions on the powers <inline-formula><tex-math id="M9">\begin{document}$ p,q,r,s $\end{document}</tex-math></inline-formula> without additional hypotheses on the weights <inline-formula><tex-math id="M10">\begin{document}$ \rho_{i} $\end{document}</tex-math></inline-formula>, we obtain a second solution using variational methods. In this context we consider two particular cases: a gradient system and a Hamiltonian system.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference20 articles.
1. A. Ambrosetti, V. Felli, A. Malchiodi.Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.
2. H. Berestycki, P. L. Lions.Nonlinear scalar fields equation I. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.
3. M.-F. Bidaut-Véron.Local behaviour of the solutions of a class of nonlinear elliptic systems, Adv. Differential Equations, 5 (2000), 147-192.
4. H. Brezis, S. Kamin.Sublinear elliptic equations in $\mathbb{R}^N$, Manuscripta Math., 74 (1992), 87-106.
5. J. A. Cardoso, P. Cerda, D. S. Pereira, P. Ubilla.Schrödinger equation with vanishing potentials involving Brezis-Kamin type problems, Discrete Contin. Dyn. Syst., 41 (2021), 2947-2969.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献