Forward triplets and topological entropy on trees

Author:

Alsedà Lluís,Juher David,Mañosas Francesc

Abstract

<p style='text-indent:20px;'>We provide a new and very simple criterion of positive topological entropy for tree maps. We prove that a tree map <inline-formula><tex-math id="M1">\begin{document}$ f $\end{document}</tex-math></inline-formula> has positive entropy if and only if some iterate <inline-formula><tex-math id="M2">\begin{document}$ f^k $\end{document}</tex-math></inline-formula> has a periodic orbit with three aligned points consecutive in time, that is, a triplet <inline-formula><tex-math id="M3">\begin{document}$ (a,b,c) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M4">\begin{document}$ f^k(a) = b $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ f^k(b) = c $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ b $\end{document}</tex-math></inline-formula> belongs to the interior of the unique interval connecting <inline-formula><tex-math id="M7">\begin{document}$ a $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ c $\end{document}</tex-math></inline-formula> (a <i>forward triplet</i> of <inline-formula><tex-math id="M9">\begin{document}$ f^k $\end{document}</tex-math></inline-formula>). We also prove a new criterion of entropy zero for simplicial <inline-formula><tex-math id="M10">\begin{document}$ n $\end{document}</tex-math></inline-formula>-periodic patterns <inline-formula><tex-math id="M11">\begin{document}$ P $\end{document}</tex-math></inline-formula> based on the non existence of forward triplets of <inline-formula><tex-math id="M12">\begin{document}$ f^k $\end{document}</tex-math></inline-formula> for any <inline-formula><tex-math id="M13">\begin{document}$ 1\le k&lt;n $\end{document}</tex-math></inline-formula> inside <inline-formula><tex-math id="M14">\begin{document}$ P $\end{document}</tex-math></inline-formula>. Finally, we study the set <inline-formula><tex-math id="M15">\begin{document}$ \mathcal{X}_n $\end{document}</tex-math></inline-formula> of all <inline-formula><tex-math id="M16">\begin{document}$ n $\end{document}</tex-math></inline-formula>-periodic patterns <inline-formula><tex-math id="M17">\begin{document}$ P $\end{document}</tex-math></inline-formula> that have a forward triplet inside <inline-formula><tex-math id="M18">\begin{document}$ P $\end{document}</tex-math></inline-formula>. For any <inline-formula><tex-math id="M19">\begin{document}$ n $\end{document}</tex-math></inline-formula>, we define a pattern that attains the minimum entropy in <inline-formula><tex-math id="M20">\begin{document}$ \mathcal{X}_n $\end{document}</tex-math></inline-formula> and prove that this entropy is the unique real root in <inline-formula><tex-math id="M21">\begin{document}$ (1,\infty) $\end{document}</tex-math></inline-formula> of the polynomial <inline-formula><tex-math id="M22">\begin{document}$ x^n-2x-1 $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3