Abstract
<p style='text-indent:20px;'>On a closed <inline-formula><tex-math id="M2">\begin{document}$ 3 $\end{document}</tex-math></inline-formula>-dimensional Riemannian manifold <inline-formula><tex-math id="M3">\begin{document}$ (M,g) $\end{document}</tex-math></inline-formula> we investigate the limit of the Einstein-Lichnerowicz equation</p><p style='text-indent:20px;'><disp-formula> <label>1</label> <tex-math id="E1"> \begin{document}$ \begin{equation} \triangle_g u + h u = f u^5 + \frac{\theta a}{u^7} \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>as the momentum parameter <inline-formula><tex-math id="M4">\begin{document}$ \theta \to 0 $\end{document}</tex-math></inline-formula>. Under a positive mass assumption on <inline-formula><tex-math id="M5">\begin{document}$ \triangle_g +h $\end{document}</tex-math></inline-formula>, we prove that sequences of positive solutions to this equation converge in <inline-formula><tex-math id="M6">\begin{document}$ C^2(M) $\end{document}</tex-math></inline-formula>, as <inline-formula><tex-math id="M7">\begin{document}$ \theta \to 0 $\end{document}</tex-math></inline-formula>, either to zero or to a positive solution of the limiting equation <inline-formula><tex-math id="M8">\begin{document}$ \triangle_g u + h u = f u^5 $\end{document}</tex-math></inline-formula>. We also prove that the minimizing solution of (1) constructed by the author in [<xref ref-type="bibr" rid="b15">15</xref>] converges uniformly to zero as <inline-formula><tex-math id="M9">\begin{document}$ \theta \to 0 $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference19 articles.
1. T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren der Mathematischen Wissenschaften, 252. Springer-Verlag, New York, 1982.
2. R. Bartnik and J. Isenberg, The constraint equations, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, Birkhäuser, Basel, (2004), 1-38.
3. P. Bizoń, S. Pletka and W. Simon, Initial data for rotating cosmologies, Classical Quantum Gravity, 32 (2015), 175015, 21 pp.
4. L. A. Caffarelli, B. Gidas, J. Spruck.Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
5. Y. Choquet-Bruhat, R. Geroch.Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys., 14 (1969), 329-335.