Affiliation:
1. Dipartimento di Matematica, Politecnico di Milano, via Bonardi 9 - Milano, 20133, Italia
Abstract
<p style='text-indent:20px;'>We study existence and non-existence of global solutions to the semilinear heat equation with a drift term and a power-like source term <inline-formula><tex-math id="M1">\begin{document}$ u^p $\end{document}</tex-math></inline-formula>, on Cartan-Hadamard manifolds. Under suitable assumptions on Ricci and sectional curvatures, we show that, for any <inline-formula><tex-math id="M2">\begin{document}$ p>1 $\end{document}</tex-math></inline-formula>, global solutions cannot exists if the initial datum is large enough. Furthermore, under appropriate conditions on the drift term, global existence is obtained for any <inline-formula><tex-math id="M3">\begin{document}$ p>1 $\end{document}</tex-math></inline-formula>, if the initial datum is sufficiently small. We also deal with Riemannian manifolds whose Ricci curvature tends to zero at infinity sufficiently fast. We show that for any non trivial initial datum, for certain <inline-formula><tex-math id="M4">\begin{document}$ p $\end{document}</tex-math></inline-formula> depending on the Ricci curvature bound, global solutions cannot exist. On the other hand, for certain values of <inline-formula><tex-math id="M5">\begin{document}$ p $\end{document}</tex-math></inline-formula>, depending on the vector field <inline-formula><tex-math id="M6">\begin{document}$ b $\end{document}</tex-math></inline-formula>, global solutions exist, for sufficiently small initial data.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献