A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior

Author:

Kaneko Yuki1,Matsuzawa Hiroshi2,Yamada Yoshio3

Affiliation:

1. Department of Mathematical and Physical Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan

2. Department of Mathematics and Physics, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka-city, Kanagawa 259-1293, Japan

3. Department of Pure and Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract

<p style='text-indent:20px;'>We study a free boundary problem of a reaction-diffusion equation <inline-formula><tex-math id="M1">\begin{document}$ u_t = \Delta u+f(u) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M2">\begin{document}$ t&gt;0,\ |x|&lt;h(t) $\end{document}</tex-math></inline-formula> under a radially symmetric environment in <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>. The reaction term <inline-formula><tex-math id="M4">\begin{document}$ f $\end{document}</tex-math></inline-formula> has positive bistable nonlinearity, which satisfies <inline-formula><tex-math id="M5">\begin{document}$ f(0) = 0 $\end{document}</tex-math></inline-formula> and allows two positive stable equilibrium states and a positive unstable equilibrium state. The problem models the spread of a biological species, where the free boundary represents the spreading front and is governed by a one-phase Stefan condition. We show multiple spreading phenomena in high space dimensions. More precisely the asymptotic behaviors of solutions are classified into four cases: big spreading, small spreading, transition and vanishing, and sufficient conditions for each dynamical behavior are also given. We determine the spreading speed of the spherical surface <inline-formula><tex-math id="M6">\begin{document}$ \{x\in \mathbb{R}^N:\ |x| = h(t)\} $\end{document}</tex-math></inline-formula>, which expands to infinity as <inline-formula><tex-math id="M7">\begin{document}$ t\to\infty $\end{document}</tex-math></inline-formula>, even when the corresponding semi-wave problem does not admit solutions.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3