Affiliation:
1. Department of Mathematics, National Changhua University of Education, Changhua 500, Taiwan
Abstract
<p style='text-indent:20px;'>In this paper, we consider the nonlinear equations arising from the self-dual Maxwell-Chern-Simons gauged <inline-formula><tex-math id="M2">\begin{document}$ O(3) $\end{document}</tex-math></inline-formula> sigma model on (2+1)-dimensional Minkowski space <inline-formula><tex-math id="M3">\begin{document}$ {\bf R^{2,1}} $\end{document}</tex-math></inline-formula> with the metric <inline-formula><tex-math id="M4">\begin{document}$ {\mathrm {diag}}(1,-1,-1) $\end{document}</tex-math></inline-formula>. We establish the asymptotic behavior of multivortex solutions corresponding to their flux and find the range of the flux for non-topological solutions. Moreover, we prove the radial symmetry property under certain conditions in one vortex point case.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference20 articles.
1. A.-A. Bogomol'nyi.The stability of classical solutions, Sov. J. Nucl. Phys., 24 (1976), 449-454.
2. D. Chae, O. Yu. Imanuvilov.Non-topological multivortex solutions to the self-dual Maxwell-Chern-Simons-Higgs systems, J. Funct. Anal., 196 (2002), 87-118.
3. D. Chae and N. Kim, Vortex condensates in the relativistic self-dual Maxwell-Chern-Simons-Higgs system, RIM-GARC Preprint, (1997), 97–50.
4. W. Chen, C. Li.Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
5. Z.-Y. Chen and J.-L. Chern, Sharp range of flux and the structure of solutions for the self-dual Maxwell-Chern-Simons $O(3)$ Sigma model, submitted.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献