Author:
Amadori Debora,Aqel Fatima Al-Zahrà
Abstract
<p style='text-indent:20px;'>In this paper we study a <inline-formula><tex-math id="M2">\begin{document}$ 2\times2 $\end{document}</tex-math></inline-formula> semilinear hyperbolic system of partial differential equations, which is related to a semilinear wave equation with nonlinear, time-dependent damping in one space dimension. For this problem, we prove a well-posedness result in <inline-formula><tex-math id="M3">\begin{document}$ L^\infty $\end{document}</tex-math></inline-formula> in the space-time domain <inline-formula><tex-math id="M4">\begin{document}$ (0,1)\times [0,+\infty) $\end{document}</tex-math></inline-formula>. Then we address the problem of the time-asymptotic stability of the zero solution and show that, under appropriate conditions, the solution decays to zero at an exponential rate in the space <inline-formula><tex-math id="M5">\begin{document}$ L^{\infty} $\end{document}</tex-math></inline-formula>. The proofs are based on the analysis of the invariant domain of the unknowns, for which we show a contractive property. These results can yield a decay property in <inline-formula><tex-math id="M6">\begin{document}$ W^{1,\infty} $\end{document}</tex-math></inline-formula> for the corresponding solution to the semilinear wave equation.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference14 articles.
1. D. Amadori, F. A.-Z. Aqel, E. Dal Santo.Decay of approximate solutions for the damped semilinear wave equation on a bounded 1d domain, J. Math. Pures Appl., 132 (2019), 166-206.
2. D. Amadori, L. Gosse.Error estimates for well-balanced and time-split schemes on a locally damped semilinear wave equation, Math. Comp., 85 (2016), 601-633.
3. D. Amadori and L. Gosse, Error Estimates for Well-Balanced Schemes on Simple Balance Laws. One-Dimensional Position-Dependent Models, SpringerBriefs in Mathematics, Springer International Publishing, 2015.
4. D. Amadori, L. Gosse.Stringent error estimates for one-dimensional, space-dependent $2\times2$ relaxation systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 621-654.
5. A. Bressan, Hyperbolic Systems of Conservation Laws - The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications 20, Oxford University Press,
2000.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献