Affiliation:
1. School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China
Abstract
<p style='text-indent:20px;'>We consider the optimization problem of minimizing <inline-formula><tex-math id="M1">\begin{document}$ \int_{\mathbb{R}^n}|\nabla u|^2\,{\mathrm{d}}x $\end{document}</tex-math></inline-formula> with double obstacles <inline-formula><tex-math id="M2">\begin{document}$ \phi\leq u\leq\psi $\end{document}</tex-math></inline-formula> a.e. in <inline-formula><tex-math id="M3">\begin{document}$ D $\end{document}</tex-math></inline-formula> and a constraint on the volume of <inline-formula><tex-math id="M4">\begin{document}$ \{u>0\}\setminus\overline{D} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M5">\begin{document}$ D\subset\mathbb{R}^n $\end{document}</tex-math></inline-formula> is a bounded domain. By studying a penalization problem that achieves the constrained volume for small values of penalization parameter, we prove that every minimizer is <inline-formula><tex-math id="M6">\begin{document}$ C^{1,1} $\end{document}</tex-math></inline-formula> locally in <inline-formula><tex-math id="M7">\begin{document}$ D $\end{document}</tex-math></inline-formula> and Lipschitz continuous in <inline-formula><tex-math id="M8">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula> and that the free boundary <inline-formula><tex-math id="M9">\begin{document}$ \partial\{u>0\}\setminus\overline{D} $\end{document}</tex-math></inline-formula> is smooth. Moreover, when the boundary of <inline-formula><tex-math id="M10">\begin{document}$ D $\end{document}</tex-math></inline-formula> has a plane portion, we show that the minimizer is <inline-formula><tex-math id="M11">\begin{document}$ C^{1,\frac{1}{2}} $\end{document}</tex-math></inline-formula> up to the plane portion.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference26 articles.
1. N. Aguilera, H. W. Alt, L. A. Caffarelli.An optimization problem with volume constraint, SIAM J. Control Optim., 24 (1986), 191-198.
2. N. E. Aguilera, L. A. Caffarelli, J. Spruck.An optimization problem in heat conduction, Ann. Sc. Norm. Super. Pisa Cl. Sci., 14 (1987), 355-387.
3. H. W. Alt, L. A. Caffarelli.Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144.
4. L. Ambrosio, I. Fonseca, P. Marcellini, L. Tartar.On a volume constrained variational problem, Arch. Ration. Mech. Anal., 149 (1999), 23-47.
5. H. Brézis, D. Kinderlehrer.The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J., 23 (1973/74), 831-844.