Abstract
<p style='text-indent:20px;'>In this work we consider a two-species predator-prey chemotaxis model</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{array}{lll} u_t = d_1\Delta u+\chi_1\nabla\cdot(u\nabla v)+u(a_1-b_{11}u-b_{12}v), &x\in \Omega, t>0, \\[0.2cm] v_t = d_2\Delta v-\chi_2\nabla\cdot(v\nabla u)+v(-a_2+b_{21}u-b_{22}v-b_{23}w), & x\in \Omega, t>0, \\[0.2cm] w_t = d_3\Delta w-\chi_3\nabla\cdot(w\nabla v)+w(-a_3+b_{32}v-b_{33}w), & x\in \Omega, t>0 \\ \end{array}\right.(\ast) $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in a bounded domain with smooth boundary. We prove that if (1.7)-(1.13) hold, the model (<inline-formula><tex-math id="M1">\begin{document}$ \ast $\end{document}</tex-math></inline-formula>) admits a global boundedness of classical solutions in any physically meaningful dimension. Moreover, we show that the global classical solutions <inline-formula><tex-math id="M2">\begin{document}$ (u,v,w) $\end{document}</tex-math></inline-formula> exponentially converges to constant stable steady state <inline-formula><tex-math id="M3">\begin{document}$ (u_\ast,v_\ast,w_\ast) $\end{document}</tex-math></inline-formula>. Inspired by [<xref ref-type="bibr" rid="b5">5</xref>], we employ the special structure of (<inline-formula><tex-math id="M4">\begin{document}$ \ast $\end{document}</tex-math></inline-formula>) and carefully balance the triple cross diffusion. Indeed, we introduced some functions and combined them in a way that allowed us to cancel the bad items.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献