The nonlocal-interaction equation near attracting manifolds

Author:

Patacchini Francesco S.,Slepčev Dejan

Abstract

<p style='text-indent:20px;'>We study the approximation of the nonlocal-interaction equation restricted to a compact manifold <inline-formula><tex-math id="M1">\begin{document}$ {\mathcal{M}} $\end{document}</tex-math></inline-formula> embedded in <inline-formula><tex-math id="M2">\begin{document}$ {\mathbb{R}}^d $\end{document}</tex-math></inline-formula>, and more generally compact sets with positive reach (i.e. prox-regular sets). We show that the equation on <inline-formula><tex-math id="M3">\begin{document}$ {\mathcal{M}} $\end{document}</tex-math></inline-formula> can be approximated by the classical nonlocal-interaction equation on <inline-formula><tex-math id="M4">\begin{document}$ {\mathbb{R}}^d $\end{document}</tex-math></inline-formula> by adding an external potential which strongly attracts to <inline-formula><tex-math id="M5">\begin{document}$ {\mathcal{M}} $\end{document}</tex-math></inline-formula>. The proof relies on the Sandier–Serfaty approach [<xref ref-type="bibr" rid="b23">23</xref>,<xref ref-type="bibr" rid="b24">24</xref>] to the <inline-formula><tex-math id="M6">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>-convergence of gradient flows. As a by-product, we recover well-posedness for the nonlocal-interaction equation on <inline-formula><tex-math id="M7">\begin{document}$ {\mathcal{M}} $\end{document}</tex-math></inline-formula>, which was shown [<xref ref-type="bibr" rid="b10">10</xref>]. We also provide an another approximation to the interaction equation on <inline-formula><tex-math id="M8">\begin{document}$ {\mathcal{M}} $\end{document}</tex-math></inline-formula>, based on iterating approximately solving an interaction equation on <inline-formula><tex-math id="M9">\begin{document}$ {\mathbb{R}}^d $\end{document}</tex-math></inline-formula> and projecting to <inline-formula><tex-math id="M10">\begin{document}$ {\mathcal{M}} $\end{document}</tex-math></inline-formula>. We show convergence of this scheme, together with an estimate on the rate of convergence. Finally, we conduct numerical experiments, for both the attractive-potential-based and the projection-based approaches, that highlight the effects of the geometry on the dynamics.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3