Multiplicity results for elliptic problems involving nonlocal integrodifferential operators without Ambrosetti-Rabinowitz condition

Author:

Bonaldo Lauren M. M.1,Hurtado Elard J.2,Miyagaki Olímpio H.3

Affiliation:

1. Instituto de Matemática, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21945-970, Brazil

2. Departamento de Matemática, Universidade de Brasília-UnB, Brasília, DF 70910-900, Brazil

3. Departamento de Matemática, Universidade Federal de São Carlos-UFSCar, São Carlos, SP 13565-905, Brazil

Abstract

<p style='text-indent:20px;'>In this paper, we study the existence and multiplicity of weak solutions for a general class of elliptic equations <inline-formula><tex-math id="M1">\begin{document} $( \mathscr{P}_\lambda)$\end{document}</tex-math></inline-formula> in a smooth bounded domain, driven by a nonlocal integrodifferential operator <inline-formula><tex-math id="M2">\begin{document}$ \mathscr{L}_{\mathcal{A}K} $\end{document}</tex-math></inline-formula> with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz type growth conditions. Using different versions of the Mountain Pass Theorem, as well as, the Fountain Theorem and Dual Fountain Theorem with Cerami condition, we obtain the existence of weak solutions for the problem <inline-formula><tex-math id="M3">\begin{document} $( \mathscr{P}_\lambda)$\end{document}</tex-math></inline-formula> and we show that the problem treated has at least one nontrivial solution for any parameter <inline-formula><tex-math id="M4">\begin{document}$ \lambda &gt;0 $\end{document}</tex-math></inline-formula> small enough as well as that the solution blows up, in the fractional Sobolev norm, as <inline-formula><tex-math id="M5">\begin{document}$ \lambda \to 0 $\end{document}</tex-math></inline-formula>. Moreover, for the sublinear case, by imposing some additional hypotheses on the nonlinearity <inline-formula><tex-math id="M6">\begin{document}$ f(x,\cdot) $\end{document}</tex-math></inline-formula>, and by using a new version of the symmetric Mountain Pass Theorem due to Kajikiya [<xref ref-type="bibr" rid="b18">18</xref>], we obtain the existence of infinitely many weak solutions which tend to zero, in the fractional Sobolev norm, for any parameter <inline-formula><tex-math id="M7">\begin{document}$ \lambda &gt;0 $\end{document}</tex-math></inline-formula>. As far as we know, the results of this paper are new in the literature.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3