On the long-time behavior for a damped Navier-Stokes-Bardina model

Author:

Jarrín Oscar1,Cortez Manuel Fernando2

Affiliation:

1. Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Vía a Nayón, C.P.170124, Quito, Ecuador

2. Departamento de Matemáticas, Escuela Politécnica Nacional, Ladrón de Guevera E11-253, Quito, Ecuador

Abstract

<p style='text-indent:20px;'>We consider a damped Navier-Stokes-Bardina model posed on the whole three-dimensional space. These equations write down as the well-know Navier-Stokes equations with an additional nonlocal operator in the nonlinear transport term, and moreover, with an additional damping term depending on a parameter <inline-formula><tex-math id="M1">\begin{document}$ \beta&gt;0 $\end{document}</tex-math></inline-formula>. First, we study the existence and <i>uniqueness</i> of global in time weak solutions in the <i>energy space</i>. Thereafter, our main objective is to describe the <i>long time behavior</i> of these solutions. For this, we use some tools in the theory of dynamical systems to prove the existence of a <i>global attractor</i>, which is <i>compact subset</i> in the energy space attracting all the weak solutions when the time goes to infinity. Moreover, we derive an upper bound for the <i>fractal dimension</i> of the global attractor associated to these equations.</p><p style='text-indent:20px;'>Finally, we find a range of values for the damping parameter <inline-formula><tex-math id="M2">\begin{document}$ \beta&gt;0 $\end{document}</tex-math></inline-formula>, for which we are able to give an acute description of the internal structure of the global attractor. More precisely, we prove that in some cases the global attractor only contains the stationary (time-independent) solution of the damped Navier-Stokes-Bardina equations.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference26 articles.

1. N. A. Adams and S. Stolz, Deconvolution methods for subgrid-scale approximation in large eddy simulation, Modern Simulation Strategies for Turbulent Flow, R.T. Edwards, Academic Press, (2001).

2. A. V. Babin and M. I. Vishik, Attractors of evolution partial differential equations and estimates of their dimension, Uspekhi Mat. Nauk, 38 (2001) 133–187.

3. A. V. Babin and M. I. Vishik, Atracttors for Evolution Equations, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.

4. J. Bardina, J. Coakley and P. Huang, Turbulence Modeling Validation, Testing, and Development, NASA Technical Memorandum, 1997.

5. J. Bardina, J. Ferziger, W. Reynolds.Improved subgrid scale models for large eddy simulation, AIAA, 80 (1980), 1300-1357.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3