Author:
Kreuml Andreas,Mordhorst Olaf
Abstract
<p style='text-indent:20px;'>This note treats several problems for the fractional perimeter or <inline-formula><tex-math id="M1">\begin{document}$ s $\end{document}</tex-math></inline-formula>-perimeter on the sphere. The spherical fractional isoperimetric inequality is established. It turns out that the equality cases are exactly the spherical caps. Furthermore, the convergence of fractional perimeters to the surface area as <inline-formula><tex-math id="M2">\begin{document}$ s \nearrow 1 $\end{document}</tex-math></inline-formula> is proven. It is shown that their limit as <inline-formula><tex-math id="M3">\begin{document}$ s \searrow -\infty $\end{document}</tex-math></inline-formula> can be expressed in terms of the volume.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference28 articles.
1. E. Arbeiter, M. Zähle.Kinematic relations for Hausdorff moment measures in spherical spaces, Math. Nachr., 153 (1991), 333-348.
2. W. Beckner.Sobolev inequalities, the Poisson semigroup, and analysis on the sphere $S^n$, Proc. Nat. Acad. Sci. U.S.A., 89 (1992), 4816-4819.
3. F. Besau, E. M. Werner.The spherical convex floating body, Adv. Math., 301 (2016), 867-901.
4. C. Borell.The Brunn-Minkowski inequality in Gauss space, Invent. Math., 30 (1975), 207-216.
5. J. Bourgain, H. Brézis and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations, IOS, Amsterdam, (2001), 439–455.