Quantitative statistical stability and linear response for irrational rotations and diffeomorphisms of the circle

Author:

Galatolo Stefano,Sorrentino Alfonso

Abstract

<p style='text-indent:20px;'>We prove quantitative statistical stability results for a large class of small <inline-formula><tex-math id="M1">\begin{document}$ C^{0} $\end{document}</tex-math></inline-formula> perturbations of circle diffeomorphisms with irrational rotation numbers. We show that if the rotation number is Diophantine the invariant measure varies in a Hölder way under perturbation of the map and the Hölder exponent depends on the Diophantine type of the rotation number. The set of admissible perturbations includes the ones coming from spatial discretization and hence numerical truncation. We also show linear response for smooth perturbations that preserve the rotation number, as well as for more general ones. This is done by means of classical tools from KAM theory, while the quantitative stability results are obtained by transfer operator techniques applied to suitable spaces of measures with a weak topology.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference51 articles.

1. J. F. Alves.Strong statistical stability of non-uniformly expanding maps,, Nonlinearity, 17 (2004), 1193-1215.

2. J. F. Alves, M. Soufi.Statistical stability in chaotic dynamics, Progress and Challenges in Dyn. Sys. Springer Proc. in Math. & Statistics, 54 (2013), 7-24.

3. J. F. Alves, M. Viana.Statistical stability for robust classes of maps with non-uniform expansion,, Ergodic Theory and Dynam. Systems, 22 (2002), 1-32.

4. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures (Second edition), Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008.

5. V. I. Arnold, Small divisors I: On mappings of the circle onto itself, Izvestiya Akad. Nauk SSSR, Ser. Mat., 25 (1961), 21-86 (in Russian)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3