Author:
Li Xiaolong,Shinohara Katsutoshi
Abstract
<p style='text-indent:20px;'>We say that a diffeomorphism <inline-formula><tex-math id="M1">\begin{document}$ f $\end{document}</tex-math></inline-formula> is super-exponentially divergent if for every <inline-formula><tex-math id="M2">\begin{document}$ b>1 $\end{document}</tex-math></inline-formula> the lower limit of <inline-formula><tex-math id="M3">\begin{document}$ \#\mbox{Per}_n(f)/b^n $\end{document}</tex-math></inline-formula> diverges to infinity, where <inline-formula><tex-math id="M4">\begin{document}$ \mbox{Per}_n(f) $\end{document}</tex-math></inline-formula> is the set of all periodic points of <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> with period <inline-formula><tex-math id="M6">\begin{document}$ n $\end{document}</tex-math></inline-formula>. This property is stronger than the usual super-exponential growth of the number of periodic points. We show that for any <inline-formula><tex-math id="M7">\begin{document}$ n $\end{document}</tex-math></inline-formula>-dimensional smooth closed manifold <inline-formula><tex-math id="M8">\begin{document}$ M $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M9">\begin{document}$ n\ge 3 $\end{document}</tex-math></inline-formula>, there exists a non-empty open subset <inline-formula><tex-math id="M10">\begin{document}$ \mathcal{O} $\end{document}</tex-math></inline-formula> of <inline-formula><tex-math id="M11">\begin{document}$ \mbox{Diff}^1(M) $\end{document}</tex-math></inline-formula> such that diffeomorphisms with super-exponentially divergent property form a dense subset of <inline-formula><tex-math id="M12">\begin{document}$ \mathcal{O} $\end{document}</tex-math></inline-formula> in the <inline-formula><tex-math id="M13">\begin{document}$ C^1 $\end{document}</tex-math></inline-formula>-topology. A relevant result about the growth rate of the lower limit of the number of periodic points for diffeomorphisms in a <inline-formula><tex-math id="M14">\begin{document}$ C^r $\end{document}</tex-math></inline-formula>-residual subset of <inline-formula><tex-math id="M15">\begin{document}$ \mbox{Diff}^r(M)\ (1\le r\le \infty) $\end{document}</tex-math></inline-formula> is also shown.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference20 articles.
1. F. Abdenur, C. Bonatti, S. Crovisier, L. J. Díaz, L. Wen.Periodic points and homoclinic classes, Erg. Th. Dyn. Sys., 27 (2007), 1-22.
2. M. Artin, B. Mazur.On periodic points, Ann. of Math., 81 (1965), 82-99.
3. M. Asaoka, K. Shinohara, D. Turaev.Degenerate behavior in non-hyperbolic semi-group actions on the interval: Fast growth of periodic points and universal dynamics, Math. Ann., 368 (2017), 1277-1309.
4. M. Asaoka, K. Shinohara, D. Turaev.Fast growth of the number of periodic points arising from heterodimensional connections, Compos. Math., 157 (2021), 1899-1963.
5. P. Berger, Generic family displaying robustly a fast growth of the number of periodic points, preprint, arXiv: 1701.02393.