Families of vector fields with many numerical invariants

Author:

Goncharuk Nataliya,Kudryashov Yury

Abstract

<p style='text-indent:20px;'>We study bifurcations in finite-parameter families of vector fields on <inline-formula><tex-math id="M1">\begin{document}$S^2$\end{document}</tex-math></inline-formula>. Recently, Yu. Ilyashenko, Yu. Kudryashov, and I. Schurov provided examples of (locally generic) structurally unstable <inline-formula><tex-math id="M2">\begin{document}$3$\end{document}</tex-math></inline-formula>-parameter families of vector fields: topological classification of these families admits at least one numerical invariant. They also provided examples of <inline-formula><tex-math id="M3">\begin{document}$(2D+1)$\end{document}</tex-math></inline-formula>-parameter families such that the topological classification of these families has at least <inline-formula><tex-math id="M4">\begin{document}$D$\end{document}</tex-math></inline-formula> numerical invariants and used those examples to construct families with functional invariants of topological classification.</p><p style='text-indent:20px;'>In this paper, we construct locally generic <inline-formula><tex-math id="M5">\begin{document}$4$\end{document}</tex-math></inline-formula>-parameter families with any prescribed number of numerical invariants and use them to construct <inline-formula><tex-math id="M6">\begin{document}$5$\end{document}</tex-math></inline-formula>-parameter families with functional invariants. We also describe a locally generic class of <inline-formula><tex-math id="M7">\begin{document}$3$\end{document}</tex-math></inline-formula>-parameter families with a tail of an infinite number sequence as an invariant of topological classification.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference30 articles.

1. V. Afraimovich, T. Young.Relative density of irrational rotation numbers in families of circle diffeomorphisms, Ergod. Th. and Dynam. Sys., 18 (1998), 1-16.

2. A. Andronov, L. Pontrjagin.Systèmes grossiers, Dokl. Akad. Nauk. SSSR, 14 (1937), 247-251.

3. A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. \begin{document}${\rm Ma}\breve{\rm{i}}{\rm er}$\end{document}, Qualitative Theory of Second-Order Dynamic Systems, Halsted Press [A division of John Wiley & Sons] and Israel Program for Scientific Translations, 1973.

4. A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Ma\begin{document}$\breve{\rm{i}}$\end{document}er, Theory of Bifurcations of Dynamic Systems on A Plane, Halsted Press [A division of John Wiley & Sons] and Israel Program for Scientific Translations, 1973.

5. V. I. Arnold, V. S. Afrajmovich, Yu. S. Ilyashenko and L. P. Shilnikov, Dynamical Systems V. Bifurcation Theory and Catastrophe Theory, Encyclopaedia of Mathematical Sciences, Springer-Verlag Berlin Heidelberg, 1994. Available from: http://www.springer.com/gp/book/9783540181736.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3