Abstract
<p style='text-indent:20px;'>In this paper, we are concerned with the following high order degenerate elliptic system:</p><p style='text-indent:20px;'><disp-formula><label/><tex-math id="FE111000">\begin{document}$\left\{ \begin{align} & {{(-A)}^{m}}u={{v}^{p}} \\ & {{(-A)}^{m}}v={{u}^{q}}\quad \text{ in }\mathbb{R}_{+}^{n+1}:=\left\{ (x,y)|x\in {{\mathbb{R}}^{n}},y>0 \right\}, \\ & u\ge 0,v\ge 0 \\ \end{align} \right.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)$\end{document}</tex-math></disp-formula></p><p style='text-indent:20px;'>where the operator <inline-formula><tex-math id="M1">\begin{document}$ A: = y\partial_{y}^2+a\partial_{y}+\Delta_{x}, \;a\geq 1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ n+2a>2m, m\in \mathbb{Z}^+,\;p,\,q\geq 1 $\end{document}</tex-math></inline-formula>. We prove the non-existence of positive smooth solutions for <inline-formula><tex-math id="M3">\begin{document}$ 1<p,\, q<\frac{n+2a+2m}{n+2a-2m} $\end{document}</tex-math></inline-formula>, and classify positive solutions for <inline-formula><tex-math id="M4">\begin{document}$ p = q = \frac{n+2a+2m}{n+2a-2m} $\end{document}</tex-math></inline-formula>. For <inline-formula><tex-math id="M5">\begin{document}$ \frac{1}{p+1}+\frac{1}{q+1}>\frac{n+2a-2m}{n+2a} $\end{document}</tex-math></inline-formula>, we show the non-existence of positive, ellipse-radial, smooth solutions. Moreover we prove the non-existence of positive smooth solutions for the high order degenerate elliptic system of inequalities <inline-formula><tex-math id="M6">\begin{document}$ (-A)^{m}u\geq v^p, (-A)^{m}v\geq u^q, u\geq 0, v\geq 0, $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M7">\begin{document}$ \mathbb{R}_+^{n+1} $\end{document}</tex-math></inline-formula> for either <inline-formula><tex-math id="M8">\begin{document}$ (n+2a-2m)q<\frac{n+2a}{p}+2m $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M9">\begin{document}$ (n+2a-2m)p<\frac{n+2a}{q}+2m $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M10">\begin{document}$ p,q>1 $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference17 articles.
1. L. Caffarelli, B. Gidas, J. Spruck.Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math, 42 (1989), 271-297.
2. W. Chen, C. Li, B. OU.Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
3. J. Chern, S. Yang.A divergence-type identity in a punctured domain and its applicaton to a singular polyharmonic problem, J. Dynam. Differential Equations, 16 (2004), 587-604.
4. P. Clément, R. Manásevich, E. Mitidieri.Positive solutions for a quasilinear system via blow up, Comm. Partial Differential Equations, 18 (1993), 2071-2106.
5. B. Gidas, W. Ni, L. Nirenberg.Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^{n}$, Adv. Math., 7 (1981), 369-402.