Topological characterizations of Morse-Smale flows on surfaces and generic non-Morse-Smale flows

Author:

Kibkalo Vladislav12,Yokoyama Tomoo3

Affiliation:

1. Moscow State University, Faculty of Mechanics and Mathematics, Russia

2. Moscow Center for Fundamental and Applied Mathematics, Russia

3. Applied Mathematics and Physics Division, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan

Abstract

<p style='text-indent:20px;'>It is known that <inline-formula><tex-math id="M1">\begin{document}$ C^r $\end{document}</tex-math></inline-formula> Morse-Smale vector fields form an open dense subset in the space of vector fields on orientable closed surfaces and are structurally stable for any <inline-formula><tex-math id="M2">\begin{document}$ r \in \mathbb{Z}_{\geq 1} $\end{document}</tex-math></inline-formula>. In particular, <inline-formula><tex-math id="M3">\begin{document}$ C^r $\end{document}</tex-math></inline-formula> Morse vector fields (i.e. Morse-Smale vector fields without limit cycles) form an open dense subset in the space of <inline-formula><tex-math id="M4">\begin{document}$ C^r $\end{document}</tex-math></inline-formula> gradient vector fields on orientable closed surfaces and are structurally stable. Therefore generic time evaluations of gradient flows on orientable closed surfaces (e.g. solutions of differential equations) are described by alternating sequences of Morse flows and instantaneous non-Morse gradient flows. To illustrate the generic transitions (e.g. bifurcations of singular points, transitions via heteroclinic separatrices), we characterize and list all generic non-Morse gradient flows. To construct such characterizations, we characterize isolated singular points of gradient flows on surfaces. In fact, such a singular point is a non-trivial finitely sectored singular point without elliptic sectors. Moreover, considering Morse-Smale flows as "generic gradient flows with limit cycles", we characterize and list all generic non-Morse-Smale flows.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3