A measure model for the spread of viral infections with mutations

Author:

Gong Xiaoqian1,Piccoli Benedetto2

Affiliation:

1. School of Mathematical and Statistical Science, Arizona State University, Tempe, AZ, 85281, USA

2. Department of Mathematical Sciences and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA

Abstract

<p style='text-indent:20px;'>Genetic variations in the COVID-19 virus are one of the main causes of the COVID-19 pandemic outbreak in 2020 and 2021. In this article, we aim to introduce a new type of model, a system coupled with ordinary differential equations (ODEs) and measure differential equation (MDE), stemming from the classical SIR model for the variants distribution. Specifically, we model the evolution of susceptible <inline-formula><tex-math id="M1">\begin{document}$ S $\end{document}</tex-math></inline-formula> and removed <inline-formula><tex-math id="M2">\begin{document}$ R $\end{document}</tex-math></inline-formula> populations by ODEs and the infected <inline-formula><tex-math id="M3">\begin{document}$ I $\end{document}</tex-math></inline-formula> population by a MDE comprised of a probability vector field (PVF) and a source term. In addition, the ODEs for <inline-formula><tex-math id="M4">\begin{document}$ S $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ R $\end{document}</tex-math></inline-formula> contains terms that are related to the measure <inline-formula><tex-math id="M6">\begin{document}$ I $\end{document}</tex-math></inline-formula>. We establish analytically the well-posedness of the coupled ODE-MDE system by using generalized Wasserstein distance. We give two examples to show that the proposed ODE-MDE model coincides with the classical SIR model in case of constant or time-dependent parameters as special cases.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability,Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Managing an Epidemic Using Compartmental Models and Measure Differential Equations;Modeling and Simulation in Science, Engineering and Technology;2024

2. Measure differential equation with a nonlinear growth/decay term;Nonlinear Analysis: Real World Applications;2023-10

3. On the coupling of well posed differential models;Nonlinear Analysis;2023-07

4. Coupling compartmental models with Markov chains and measure evolution equations to capture virus mutability;Mathematical Models and Methods in Applied Sciences;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3