Affiliation:
1. École des Ponts ParisTech and INRIA Paris, 6 & 8, avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France
Abstract
<p style='text-indent:20px;'>We consider a homogenization problem for the diffusion equation <inline-formula><tex-math id="M1">\begin{document}$ -\operatorname{div}\left(a_{\varepsilon} \nabla u_{\varepsilon} \right) = f $\end{document}</tex-math></inline-formula> when the coefficient <inline-formula><tex-math id="M2">\begin{document}$ a_{\varepsilon} $\end{document}</tex-math></inline-formula> is a non-local perturbation of a periodic coefficient. The perturbation does not vanish but becomes rare at infinity in a sense made precise in the text. We prove the existence of a corrector, identify the homogenized limit and study the convergence rates of <inline-formula><tex-math id="M3">\begin{document}$ u_{\varepsilon} $\end{document}</tex-math></inline-formula> to its homogenized limit.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability,Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability
Reference21 articles.
1. G. Allaire.Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518.
2. M. Avellaneda, F.-H. Lin.Compactness methods in the theory of homogenization, Communications on Pure and Applied Mathematics, 40 (1987), 803-847.
3. M. Avellaneda, F.-H. Lin.Compactness methods in the theory of homogenization II: Equations in non-divergence form, Communications on Pure and Applied Mathematics, 42 (1989), 139-172.
4. M. Avellaneda, F.-H. Lin.$L^p$ bounds on singular integrals in homogenization, Communications on Pure and Applied Mathematics, 44 (1991), 897-910.
5. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, 5. North-Holland Publishing Co., Amsterdam-New York, 1978.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Defects in homogenization theory;Séminaire Laurent Schwartz — EDP et applications;2023-07-12
2. Dimension ≥ 2: Some Explicit Cases Beyond the Periodic Setting;Homogenization Theory for Multiscale Problems;2022-12-23
3. Homogenization in Dimension 1;Homogenization Theory for Multiscale Problems;2022-12-23
4. Dimension ≥ 2: Des cas explicites au-delà du périodique;Homogénéisation en milieu périodique... ou non;2022
5. Homogénéisation en dimension 1;Homogénéisation en milieu périodique... ou non;2012-02-24