Author:
Iqbal Akhlad,Kumar Praveen
Abstract
<p style='text-indent:20px;'>In this article, we define a new class of functions on Riemannian manifolds, called geodesic <inline-formula><tex-math id="M2">\begin{document}$ \mathcal{E} $\end{document}</tex-math></inline-formula>-prequasi-invex functions. By a suitable example it has been shown that it is more generalized class of convex functions. Some of its characteristics are studied on a nonlinear programming problem. We also define a new class of sets, named geodesic slack invex set. Furthermore, a sufficient optimality condition is obtained for a nonlinear programming problem defined on a geodesic local <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{E} $\end{document}</tex-math></inline-formula>-invex set.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Algebra and Number Theory,Applied Mathematics,Control and Optimization,Algebra and Number Theory
Reference20 articles.
1. I. Ahmad, A. Iqbal and Shahid Ali, On properties of geodesic $\eta$-preinvex functions, Advances in Operations Research, (2009), Article ID 381831, 10 pages.
2. A. Barani, M. R. Pouryayevali.Invex sets and preinvex functions on Riemannian manifolds, J. Math. Anal. App., 328 (2007), 767-779.
3. D. I. Duca, E. Duca, L. Lupsa, R. Blaga.E-convexfunctions, Bull. Appl. Comput. Math., 43 (2000), 93-103.
4. D. I. Duca, L. Lupsa.On the E-epigraph of an E-convex function, Journal of Optimization Theory and Applications, 129 (2006), 341-348.
5. C. Fulga, V. Preda.Nonlinear programming with E-preinvex and local E-preinvex functions, Eur. J. Oper. Res., 192 (2009), 737-743.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献