Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C

Author:

Guerarra Sihem

Abstract

<p style='text-indent:20px;'>In this paper we derive the extremal ranks and inertias of the matrix <inline-formula><tex-math id="M1">\begin{document}$ X+X^{\ast}-P $\end{document}</tex-math></inline-formula>, with respect to <inline-formula><tex-math id="M2">\begin{document}$ X $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ P\in\mathbb{C} _{H}^{n\times n} $\end{document}</tex-math></inline-formula> is given, <inline-formula><tex-math id="M4">\begin{document}$ X $\end{document}</tex-math></inline-formula> is a least rank solution to the matrix equation <inline-formula><tex-math id="M5">\begin{document}$ AXB = C $\end{document}</tex-math></inline-formula>, and then give necessary and sufficient conditions for <inline-formula><tex-math id="M6">\begin{document}$ X+X^{\ast}\succ P $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M7">\begin{document}$ \left( \geq P\text{, }\prec P\text{, }\leq P\right) $\end{document}</tex-math></inline-formula> in the Löwner partial ordering. As consequence, we establish necessary and sufficient conditions for the matrix equation <inline-formula><tex-math id="M8">\begin{document}$ AXB = C $\end{document}</tex-math></inline-formula> to have a Hermitian Re-positive or Re-negative definite solution.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,Algebra and Number Theory,Applied Mathematics,Control and Optimization,Algebra and Number Theory

Reference17 articles.

1. A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2$^{\rm nd}$ ed., Springer, 2003.

2. S. L. Cambell and C. D. Meyer, Generalized Inverse of Linear Transformations, SIAM, 2008.

3. J. Groβ.Nonnegative-definite and positive definite solutions to the matrix equation $AXA^{\ast} = B$-revisited, Linear Algebra Appl., 321 (2000), 123-129.

4. S. Guerarra and S. Guedjiba, Common least-rank solution of matrix equations $A_{1}X_{1}B_{1} = C_{1}$ and $A_{2}X_{2} B_{2} = C_{2}$ with applications, Facta Universitatis (Niš). Ser. Math. Inform., 29 (2014), 313–323.

5. S. Guerarra and S. Guedjiba, Common Hermitian least-rank solution of matrix equations $A_{1}XA_{1}^{\ast} = B_{1}$ and $A_{2}XA_{2}^{\ast} = B_{2}$ subject to inequality restrictions, Facta Universitatis (Niš). Ser. Math. Inform., 30 (2015), 539–554.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3