1.
J. Adler and O. Öktem, Deep Bayesian inversion, arXiv: 1811.05910.
2. Solving ill-posed inverse problems using iterative deep neural networks
3.
A. Almahairi, S. Rajeshwar, A. Sordoni, P. Bachman and A. Courville, Augmented cyclegan: Learning many-to-many mappings from unpaired data, in International Conference on Machine Learning, (2018), 195-204.
4.
M. S. Alnæs, J. Blechta, J. E. Hake, A. Johansson, B. Kehlet, A. Logg, C. N. Richardson, J. Ring, M. E. Rognes and G. N. Wells, The FEniCS project version 1.5., Archive of Numerical Software, 3 (2015).
5. Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions