On fast convergence rates for generalized conditional gradient methods with backtracking stepsize

Author:

Kunisch Karl12,Walter Daniel2

Affiliation:

1. University of Graz, Institute of Mathematics and Scientific Computing, Austria

2. Johann Radon Institute for Compuational and Applied Mathematics, Austria

Abstract

<p style='text-indent:20px;'>A generalized conditional gradient method for minimizing the sum of two convex functions, one of them differentiable, is presented. This iterative method relies on two main ingredients: First, the minimization of a partially linearized objective functional to compute a descent direction and, second, a stepsize choice based on an Armijo-like condition to ensure sufficient descent in every iteration. We provide several convergence results. Under mild assumptions, the method generates sequences of iterates which converge, on subsequences, towards minimizers. Moreover, a sublinear rate of convergence for the objective functional values is derived. Second, we show that the method enjoys improved rates of convergence if the partially linearized problem fulfills certain growth estimates. Most notably these results do not require strong convexity of the objective functional. Numerical tests on a variety of challenging PDE-constrained optimization problems confirm the practical efficiency of the proposed algorithm.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,Algebra and Number Theory,Applied Mathematics,Control and Optimization,Algebra and Number Theory

Reference42 articles.

1. F. J. A. Artacho, M. H. Geoffroy.Metric subregularity of the convex subdifferential in Banach spaces, J. Nonlinear Convex Anal., 15 (2014), 35-47.

2. A. Beck, First-Order Methods in Optimization, vol. 25, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM); Philadelphia, PA: Mathematical Optimization Society (MOS), 2017.

3. A. Beck, E. Pauwels, S. Sabach.The cyclic block conditional gradient method for convex optimization problems, SIAM J. Optim., 25 (2015), 2024-2049.

4. D. P. Bertsekas, Nonlinear Programming, Belmont, MA: Athena Scientific, 2016.

5. K. Bredies, M. Carioni, S. Fanzon and F. Romero, A generalized conditional gradient method for dynamic inverse problems with optimal transport regularization, 2020.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3