Abstract
<p style='text-indent:20px;'>We consider a convex composite minimization problem, whose objective is the sum of a relatively-strongly convex function and a closed proper convex function. A dual Bregman proximal gradient method is proposed for solving this problem and is shown that the convergence rate of the primal sequence is <inline-formula><tex-math id="M1">\begin{document}$ O(\frac{1}{k}) $\end{document}</tex-math></inline-formula>. Moreover, based on the acceleration scheme, we prove that the convergence rate of the primal sequence is <inline-formula><tex-math id="M2">\begin{document}$ O(\frac{1}{k^{\gamma}}) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ \gamma\in[1,2] $\end{document}</tex-math></inline-formula> is determined by the triangle scaling property of the Bregman distance.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Algebra and Number Theory,Applied Mathematics,Control and Optimization,Algebra and Number Theory