Author:
Akutsah Francis,Mebawondu Akindele Adebayo,Abass Hammed Anuoluwapo,Narain Ojen Kumar
Abstract
<p style='text-indent:20px;'>In this work, we propose a new inertial method for solving strongly monotone variational inequality problems over the solution set of a split variational inequality and composed fixed point problem in real Hilbert spaces. Our method uses stepsizes that are generated at each iteration by some simple computations, which allows it to be easily implemented without the prior knowledge of the operator norm as well as the Lipschitz constant of the operator. In addition, we prove that the proposed method converges strongly to a minimum-norm solution of the problem without using the conventional two cases approach. Furthermore, we present some numerical experiments to show the efficiency and applicability of our method in comparison with other methods in the literature. The results obtained in this paper extend, generalize and improve results in this direction.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Algebra and Number Theory,Applied Mathematics,Control and Optimization,Algebra and Number Theory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献