Author:
Bazikar Fatemeh,Ketabchi Saeed,Moosaei Hossein
Abstract
<p style='text-indent:20px;'>In this paper, we propose a method for solving the twin bounded support vector machine (TBSVM) for the binary classification. To do so, we use the augmented Lagrangian (AL) optimization method and smoothing technique, to obtain new unconstrained smooth minimization problems for TBSVM classifiers. At first, the augmented Lagrangian method is recruited to convert TBSVM into unconstrained minimization programming problems called as AL-TBSVM. We attempt to solve the primal programming problems of AL-TBSVM by converting them into smooth unconstrained minimization problems. Then, the smooth reformulations of AL-TBSVM, which we called AL-STBSVM, are solved by the well-known Newton's algorithm. Finally, experimental results on artificial and several University of California Irvine (UCI) benchmark data sets are provided along with the statistical analysis to show the superior performance of our method in terms of classification accuracy and learning speed.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Algebra and Number Theory,Applied Mathematics,Control and Optimization,Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献