An efficient genetic algorithm for decentralized multi-project scheduling with resource transfers

Author:

Zhang Jingwen,Liu Wanjun,Liu Wanlin

Abstract

<p style='text-indent:20px;'>This paper investigates the decentralized resource-constrained multi-project scheduling problem with transfer times (DRCMPSPTT) in which the transfer times of the global resources among different projects are assumed to be sequence-independent, while transfers of local resources take no time within a project. First, two decision variables (<inline-formula><tex-math id="M1">\begin{document}$ {y_{ijg}} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ {w_{ijg}} $\end{document}</tex-math></inline-formula>) are adopted to express the transition state of global resources between projects. <inline-formula><tex-math id="M3">\begin{document}$ {y_{ijg}} $\end{document}</tex-math></inline-formula> (takes a value of 0 or 1) represents whether activity <i>i</i> transfers global resource <i>g</i> to activity <i>j</i>; accordingly, the transferred quantity is denoted as <inline-formula><tex-math id="M4">\begin{document}$ {w_{ijg}} $\end{document}</tex-math></inline-formula>. Then, we construct an integer linear model with the goal of minimizing the average project delay for the DRCMPSPTT. Second, an adaptive genetic algorithm (GA) is developed to solve the DRCMPSPTT. To gain the schedules for the DRCMPSPTT, the traditional serial and parallel scheduling generation schemes (SGSs) are modified to combine with different resource transfer rules and to design multiple decoding schemes. Third, the numerical experiments are implemented to analyse the effects of eight decoding schemes, and we found that the scheme comprising the parallel SGS and maxRS rule can make the GA work the best; furthermore, the effectiveness of the GA_maxRS (GA embedded with the best scheme) is demonstrated by solving some instances with different sizes.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management,Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3