A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project

Author:

Lotfi Reza,Yadegari Zahra,Hosseini Seyed Hossein,Khameneh Amir Hossein,Tirkolaee Erfan Babaee,Weber Gerhard-Wilhelm

Abstract

<p style='text-indent:20px;'>Sustainable development requires scheduling and implementation of projects by considering cost, environment, energy, and quality factors. Using a robust approach, this study investigates the time-cost-quality-energy-environment problem in executing projects and practically indicates its implementation capability in the form of a case study of a bridge construction project in Tehran, Iran. This study aims to take into account the sustainability pillars in scheduling projects and uncertainties in modeling them. To model the study problem, robust nonlinear programming (NLP) involving the objectives of cost, quality, energy, and pollution level is applied with resource-constrained. According to the results, as time diminished, the cost, energy, and pollution initially decreased and then increased, witha reduction in quality. To make the model close to the real world by considering uncertainties, the cost and quality tangibly improved, and pollution and energy consumption declined. We applied the augmented <inline-formula><tex-math id="M1">\begin{document}$ \varepsilon $\end{document}</tex-math></inline-formula>-constraint method to solve the proposed model. According to the result of the research, with regard to the time-cost, time-quality, time-energy, and time-pollution charts, as uncertainty increases, the cost and quality will improve, and pollution and energy will decrease.</p><p style='text-indent:20px;'>The proposed model can be employed for all industrial projects, including roads, construction, and manufacturing.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management,Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3