Author:
Li Xia,Wang Yong,Huang Zheng-Hai
Abstract
<p style='text-indent:20px;'>A large number of real-world problems can be transformed into mathematical problems by means of third-order real tensors. Recently, as an extension of the generalized matrix function, the generalized tensor function over the third-order real tensor space was introduced with the aid of a scalar function based on the T-product for third-order tensors and the tensor singular value decomposition; and some useful algebraic properties of the function were investigated. In this paper, we show that the generalized tensor function can inherit a lot of good properties from the associated scalar function, including continuity, directional differentiability, Fréchet differentiability, Lipschitz continuity and semismoothness. These properties provide an important theoretical basis for the studies of various mathematical problems with generalized tensor functions, and particularly, for the studies of tensor optimization problems with generalized tensor functions.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management,Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献