Author:
Zhao Jianxing,Luo Jincheng
Abstract
<p style='text-indent:20px;'>This paper mainly considers the <i>C</i>-eigenvalues of a piezoelectric-type tensor. For this, we first discuss its relationship with <inline-formula><tex-math id="M1">\begin{document}$ l^{k, s} $\end{document}</tex-math></inline-formula>-singular values of a partially symmetric rectangular tensor, and then present three types of <i>C</i>-eigenvalue inclusion intervals which can be used to locate all <i>C</i>-eigenvalues of a piezoelectric-type tensor and can provide an upper and a lower bound for the largest <i>C</i>-eigenvalue of a piezoelectric-type tensor. Finally, we present an alternative method to compute all <i>C</i>-eigenpairs of a piezoelectric-type tensor.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management,Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management
Reference35 articles.
1. L. V. Ahlfors, Complex Analysis, 2nd edn, McGraw-Hill, New York, 1966.
2. K. Chang, L. Qi, G. Zhou.Singular values of a real rectangular tensor, J. Math. Anal. Appl., 370 (2010), 284-294.
3. H. Che, H. Chen, Y. Wang.C-eigenvalue inclusion theorems for piezoelectric-type tensors, Appl. Math. Lett., 89 (2019), 41-49.
4. Y. Chen, A. Jákli and L. Qi, Spectral analysis of piezoelectric tensors, preprint, arXiv: 1703.07937v1.
5. Y. Chen, L. Qi and E. G. Virga, Octupolar tensors for liquid crystals, J. Phys. A, 51 (2018), 025206, 20 pp.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献