A new data-driven robust optimization approach to multi-item newsboy problems

Author:

Kou Ying,Wan Zhong

Abstract

<p style='text-indent:20px;'>A newsboy problem is a typical stochastic inventory management problem and has extensive applications in the fields of operational research, management sciences and marketing sciences. One of the challenges underlying such problems is to handle the uncertainty of demands. In the existing results, it is often to assume that the demand distribution is given to facilitate solution of the problems. In this paper, a novel data-driven robust optimization model for solving multi-item newsboy problems is proposed by combining the absolute robust optimization with a data-driven uncertainty set, and the latter is leveraged to address the uncertainty of demands. For the single-item situation, a closed-form solution is obtained and influences of parameters on the optimal solutions are analyzed. Owing to complexity of the multi-item situation, a uniform smoothing function is leveraged to smooth the proposed model. Then, an algorithm, called a modified Frank-Wolfe feasible direction algorithm, is developed to solve a series of smooth subproblems. Numerical simulation demonstrates that the proposed model in this paper can reduce over-conservation of robust optimization methods and is more robust than other similar well-established methods in the literature. By numerical simulation and sensitivity analysis, it is concluded that: (1) The proposed method can provide more stable optimal order policy and profits than the existing ones; (2) For a product with a higher unit purchase price, the optimal order quantities are more sensitive to its change; (3) In view of profitability, the newsboy should not to be too risk-averse.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management,Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3