On the new coupled complex boundary method in shape optimization framework for solving stationary free boundary problems

Author:

Rabago Julius Fergy T.1

Affiliation:

1. Faculty of Mathematics and Physics, Kanazawa University, Kanazawa 920-1192, Japan

Abstract

<p style='text-indent:20px;'>We expose here a novel application of the so-called coupled complex boundary method – first put forward by Cheng et al. (2014) to deal with inverse source problems – in the framework of shape optimization for solving the exterior Bernoulli problem, a prototypical model of stationary free boundary problems. The idea of the method is to transform the overdetermined problem to a complex boundary value problem with a complex Robin boundary condition coupling the Dirichlet and Neumann boundary conditions on the free boundary. Then, we optimize the cost function constructed by the imaginary part of the solution in the whole domain in order to identify the free boundary. We also prove the existence of the shape derivative of the complex state with respect to the domain. Afterwards, we compute the shape gradient of the cost functional, and characterize its shape Hessian at the optimal domain under a strong, and then a mild regularity assumption on the domain. We then prove the ill-posedness of the proposed shape problem by showing that the latter expression is compact. Also, we devise an iterative algorithm based on a Sobolev gradient scheme via finite element method to solve the minimization problem. Finally, we illustrate the applicability of the method through several numerical examples, both in two and three spatial dimensions.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3