Optimal control of a malaria model with long-lasting insecticide-treated nets

Author:

Tchoumi S. Y., ,Kouakep-Tchaptchie Y.,Fotsa-Mbogne D. J.,Kamgang J. C.,Tchuenche J. M., ,

Abstract

<abstract><p>A deterministic multi-stage malaria model with a non-therapeutic control measure and the effect of loss of immunity due to the use of the Long-Lasting bednets with a control perspective is formulated and analyzed both theoretically and numerically. The model basic reproduction number is derived, and analytical results show that the model's equilibria are locally and globally asymptotically stable when certain threshold conditions are satisfied. Pontryagin's Maximum Principle with respect to a time dependent constant is used to derive the necessary conditions for the optimal usage of the Long-Lasting Insecticide-treated bednets (LLINs) to mitigate the malaria transmission dynamics. This is accomplished by introducing biologically admissible controls and $ \epsilon\% $-approximate sub-optimal controls. Forward-backward fourth-order Runge-Kutta method is used to numerically solve the optimal control problem. We observe that the disadvantage (loss of immunity, even at its maximum) in the use of bednets is compensated by the benefit of the number of susceptible/infected individuals excluded from the malaria disease dynamics, the only danger being the poor use of the long-lasting bednets. Moreover, it is possible to get closer to the optimal results with a realistic strategy. The results from this study could help public health planners and policy decision-makers to design reachable and more practical malaria prevention programs "close" to the optimal strategy.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference39 articles.

1. H. Abboubakar, R. Racke, Mathematical modelling and optimal control of typhoid fever, Konstanzer Schriften in Mathematik, 386 (2019), 1–32.

2. A. I. Abioye, O. J. Peter, A. A. Ayoade, O. A. Uwaheren, M. O. Ibrahim, Application of adomian decomposition method on a mathematical model of malaria, Advances in Mathematics: Scientific Journal, 9 (2020).

3. A. I. Abioye, O. J. Peter, F. A. Oguntolu, A. F. Adebisi, T. F. Aminu, Global stability of seir-sei model of malaria transmission, Adv. Math., Sci. J, 9 (2020). 5305–5317.

4. A. I. Abioye, M. O. Ibrahim, O. J. Peter, H. A. Ogunseye, Optimal control on a mathematical model of malaria, Sci. Bull., Series A: Appl Math Phy, (2020), 178–190.

5. AI Abioye, MO Ibrahim, OJ Peter, S Amadiegwu, FA Oguntolu, Differential transform method for solving mathematical model of seir and sei spread of malaria, 2018.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3