Fast non-uniform Fourier transform based regularization for sparse-view large-size CT reconstruction

Author:

Wang Zhenglin1

Affiliation:

1. School of Engineering and Technology, Central Queensland University, Bruce Highway, North Rockhampton, QLD 4702, Australia

Abstract

<p style='text-indent:20px;'>Spare-view CT imaging is advantageous to decrease the radiation exposure, acquisition time and computational cost, but suffers from severe streak noise in reconstruction if the classical filter back projection method is employed. Although a few compressed sensing based algorithms have recently been proposed to remedy the insufficiency of projections and have achieved remarkable improvement in reconstruction quality, they face computational challenges for large-scale CT images (e.g., larger than 2000℅2000 pixels). In this paper, we present a fast non-uniform Fourier transform based reconstruction method, targeting at under-sampling high resolution Synchrotron-based micro-CT imaging. The proposed method manipulates the Fourier slice theorem to avoid the involvement of large-scale system matrices, and the reconstruction process is performed in the Fourier domain. With a total variation penalty term, the proposed method can be formulated into an unconstrained minimization problem, which is able to be efficiently solved by the limited-memory BFGS algorithm. Moreover, direct non-uniform Fourier transform is computationally costly, so the developed NUFFT algorithm is adopted to approximate it with little loss of quality. Numerical simulation is implemented to compare the proposed method with some other competing approaches, and then real data obtained from the Australia Synchrotron facility are tested to demonstrate the practical applications of the proposed approach. In short, the significance of the proposed approach includes (1) that it can handle high-resolution CT images with millions of pixels while several other contemporary methods fail; (2) that it can achieve much better reconstruction quality than other methods when the projections are insufficient.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3