Solving problems involving numerical integration (I): Incorporating different techniques

Author:

Guo William

Abstract

<abstract> <p>Numerical integration plays an important role in solving various engineering and scientific problems and is often learnt in applied calculus commonly through the trapezium and Simpson's methods (or rules). A common misconception for some students is that Simpson's method is the default choice for numerical integration due to its higher accuracy in approximation over the trapezium method by overlooking the requirement for using Simpson's method. As learning progressed to other numerical methods scheduled later in advanced mathematics, such as interpolations and computational modelling using computing tools like MATLAB, there is a lack of articulation among these numerical methods for students to solve problems solvable only by combining two or more approaches. This classroom note shares a few teaching and learning practices the author experienced in lectures, tutorials, and formal assessments on comparing or combining different numerical methods for numerical integration for engineering students in applied calculus and advanced mathematics over the past decade at Central Queensland University (CQU), a regional university in Australia. Each case represents a common concern raised or a mistake made by some students in different times. These efforts helped not only correct the misconception on the use of Simpson's method by some students, but also develop students' strategic thinking in problem solving, particularly involving decision-making for choosing the best possible method to produce a more appropriate solution to a problem that does not have an analytical solution.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference20 articles.

1. Guo, W.W., Essentials and Examples of Applied Mathematics, 2nd ed. 2020, Melbourne, Australia: Pearson.

2. Croft, A., Davison, R., Hargreaves, M. and Flint J., Engineering Mathematics, 5th ed. 2017, Harlow, UK: Pearson.

3. Guo, W., A practical strategy to improve performance of Newton's method in solving nonlinear equations. STEM Education, 2022, 2(4): 345‒358. https://doi.org/10.3934/steme.2022021

4. Guo, W.W. and Wang, Y., Advanced Mathematics for Engineering and Applied Sciences, 2019, Sydney, Australia: Pearson.

5. Wang, Y. and Guo, W.W., Applied Computational Modelling with MATLAB, 2018, Melbourne: Pearson Australia.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3