Abstract
<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ \mathscr{M} $\end{document}</tex-math></inline-formula> be a geometrically finite hyperbolic manifold. We present a very general theorem on the shrinking target problem for the geodesic flow, using its exponential mixing. This includes a strengthening of Sullivan's logarithm law for the excursion rate of the geodesic flow. More generally, we prove logarithm laws for the first hitting time for shrinking cusp neighborhoods, shrinking tubular neighborhoods of a closed geodesic, and shrinking metric balls, as well as give quantitative estimates for the time a generic geodesic spends in such shrinking targets.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Algebra and Number Theory,Analysis,Applied Mathematics,Algebra and Number Theory,Analysis
Reference28 articles.
1. B. H. Bowditch.Geometrical finiteness for hyperbolic groups, J. Funct. Anal., 113 (1993), 245-317.
2. F. Dal'bo, J.-P. Otal, M. Peigné.Séries de Poincaré des groupes géométriquement finis, Israel. J. Math., 118 (2000), 109-124.
3. K. Corlette, A. Iozzi.Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Amer. Math. Soc., 351 (1999), 1507-1530.
4. M. M. Dodson, M. V. Melián, D. Pestana, S. L. Velani.Patterson measure and ubiquity, Ann. Acad. Sci. Fenn. Ser. A. I Math., 20 (1995), 37-60.
5. S. Edwards and H. Oh, Spectral gap and exponential mixing on geometrically finite hyperbolic manifolds, preprint, arXiv: 2001.03377. To appear in Duke Math. J..
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献