Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution

Author:

Alvarez Emiliano,Brida Juan Gabriel,Rosich Lucía,Limas Erick

Abstract

<p style='text-indent:20px;'>This work addresses the spread of the coronavirus through a non-parametric approach, with the aim of identifying communities of countries based on how similar their evolution of the disease is. The analysis focuses on the number of daily new COVID-19 cases per ten thousand people during a period covering at least 250 days after the confirmation of the tenth case. Dynamic analysis is performed by constructing Minimal Spanning Trees (MST) and identifying groups of similarity in contagions evolution in 95 time windows of a 150-day amplitude that moves one day at a time. The intensity measure considered was the number of times countries belonged to a similar performance group in constructed time windows. Groups' composition is not stable, indicating that the COVID-19 evolution needs to be treated as a dynamic problem in the context of complex systems. Three communities were identified by applying the Louvain algorithm. Identified communities analysis according to each country's socioeconomic characteristics and variables related to the disease sheds light on whether there is any suggested course of action. Even when strong testing and tracing cases policies may be related with a more stable dynamic of the disease, results indicate that communities are conformed by countries with diverse characteristics. The best option to counteract the harmful effects of a pandemic may be having strong health systems in place, with contingent capacity to deal with unforeseen events and available resources capable of a rapid expansion of its capacity.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability,Applied Mathematics,Modeling and Simulation,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3