Author:
Eze Wilson U., ,Oyegoke Toyese,Gaiya Jonathan D.,Umunakwe Reginald,Onyemachi David I., , , ,
Abstract
<abstract>
<p>Plastics have become vital assets for humanity; these materials are used widely in pharmaceuticals, healthcare systems, and many other applications. The rising demand and uses of articles made wholly or partly from synthetic polymers, coupled with their non-biodegradability, contributes to the massive volume of plastic wastes across cities in most developing nations. Thistrend has become an issue of significant environmental concern. However, the fight against COVID-19 would look almost impossible without personal protective equipment (PPE) primarily made from various plastics which in turn, contribute enormously to the volume of waste streams. To circumvent this present challenge, research has been recommending solutions. The existing literature primarily focuses on the most developed countries, emphasising Asian countries with less attention to other developing countries like Nigeria and African countries. This study, therefore, reviewed the personal protective equipment used in healthcare, plastic types employed for their production, and the appropriate technology for managing their associated wastes. The application of proper disposal methods can reduce the toxic effects of discarded plastics on human health and the environment. In this review, the SWOT analysis approach was employed to unveil the benefits, limitations, opportunities, and threats associated with respective waste management approaches. As the coronavirus pandemic continues to intensifier, its adverse impacts on human health and the economy are increasing; authorities are encouraged to address waste management, including medical, household, and other hazardous waste, as an urgent and critical public service to minimize potential secondary health and environmental impacts.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference83 articles.
1. European Commission, Directive of the European Parliament and of the Council on the Reduction of the Impact of Certain Plastic Products on the Environment. The European Parliament and the Council of the European Union, 2019. Available from: https://www.legislation.gov.uk/eudr/2019/904.
2. UK Government, A Green Future: Our 25 Year Plan to Improve the Environment. UK Government, 2018. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/693158/25-year-environment-plan.pdf.
3. Carrington D, India Will Abolish all Single-use Plastic by 2022, Vows Narendra Modi. The Guardian, 2018. Available from: https://www.theguardian.com/environment/2018/jun/05/india-will-abolish-all-single-use-plastic-by-2022-vows-narendra-modi.
4. Eze WU, Madufor IC, Onyeagoro GN, et al. (2020) The effect of Kankara zeolite-Y-based catalyst on some physical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis. Polym Bull 77: 1399–1415. https://doi.org/10.1007/s00289-019-02806-y
5. Akter N, Acott RE, Sattar MG, et al. (1997) Medical waste disposal at BRAC health centres: an environmental study. Res Rep 13: 151–179.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献