Abstract
<p style='text-indent:20px;'>This paper constructs several classes of three-weight ternary linear codes from non-weakly regular dual-bent functions based on a generic construction method. Instead of the whole space, we use the subspaces <inline-formula><tex-math id="M1">\begin{document}$ B_{\pm}(f) $\end{document}</tex-math></inline-formula> associated with a ternary non-weakly regular dual-bent function <inline-formula><tex-math id="M2">\begin{document}$ f $\end{document}</tex-math></inline-formula>. Unusually, we use the pre-image sets of the dual function <inline-formula><tex-math id="M3">\begin{document}$ f^* $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M4">\begin{document}$ B_{\pm}(f) $\end{document}</tex-math></inline-formula> as the defining sets of the corresponding codes. Since the size of the defining sets of the constructed codes is flexible, it enables us to construct several codes with different parameters for a fixed dimension. We represent the weight distribution of the constructed codes, and we also give several examples.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference31 articles.
1. R. Anderson, C. Ding, T. Helleseth, T. Klove.How to build robust shared control systems, Designs, Codes and Cryptography, 15 (1998), 111-124.
2. A. R. Calderbank, A. R. Goethals.Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.
3. R. Calderbank, W. M. Kantor.The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.
4. C. Carlet., Boolean Functions for Cryptography and Coding Theory, ${ref.volume} (2021).
5. C. Carlet, C. Ding, J. Yuan.Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Transactions on Information Theory, 51 (2005), 2089-2102.