Public key cryptography based on twisted dihedral group algebras
-
Published:2022
Issue:0
Volume:0
Page:0
-
ISSN:1930-5346
-
Container-title:Advances in Mathematics of Communications
-
language:
-
Short-container-title:AMC
Author:
de la Cruz Javier1, Villanueva-Polanco Ricardo2
Affiliation:
1. Department of Mathematics and Statistics, Universidad del Norte, Barranquilla, Colombia 2. Department of Computer Science and Engineering, Universidad del Norte, Barranquilla, Colombia
Abstract
<p style='text-indent:20px;'>In this paper, we propose to use a twisted dihedral group algebra for public-key cryptography. For this, we introduce a new <inline-formula><tex-math id="M1">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-cocycle <inline-formula><tex-math id="M2">\begin{document}$ \alpha_{\lambda} $\end{document}</tex-math></inline-formula> to twist the dihedral group algebra. Using the ambient space <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{F}^{\alpha_{\lambda}} D_{2n} $\end{document}</tex-math></inline-formula>, we then introduce a key exchange protocol and present an analysis of its security. Moreover, we explore the properties of the resulting twisted algebra <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{F}^{\alpha_{\lambda}}D_{2n} $\end{document}</tex-math></inline-formula>, exploiting them to enhance our key exchange protocol. We also introduce a probabilistic public-key scheme derived from our key-exchange protocol and obtain a key encapsulation mechanism (KEM) by applying a well-known generic transformation to our public-key scheme. Finally, we present a proof-of-concept implementation of the resulting key encapsulation mechanism.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference24 articles.
1. C. Bader, D. Hofheinz, T. Jager, E. Kiltz and Y. Li, Tightly-secure authenticated key exchange, In: Dodis Y., Nielsen J.B. (eds) Theory of Cryptography. Part I., 629–658, TCC 2015. Lecture Notes in Computer Science, vol 9014. Springer, Berlin, Heidelberg, 2015. 2. D. Boneh and V. Shoup, A Graduate Course in Applied Cryptography, 2020, available at http://toc.cryptobook.us/book.pdf. 3. R. Canetti and H. Krawczyk, Analysis of key-exchange protocols and their use for building secure channels, In: Pfitzmann B. (eds) Advances in Cryptology-EUROCRYPT 2001. (Innsbruck), 453–474, Lecture Notes in Computer Science, vol 2045. Springer, Berlin, Heidelberg, 2001. 4. C. Costello, L. De Feo, D. Jao, P. Longa, M. Naehrig and J. Renes, Supersingular Isogeny Key Encapsulation, 2020, available at https://sike.org/files/SIDH-spec.pdf. 5. J. De La Cruz and R. Villanueva-Polanco, Implementation of a key encapsulation mechanism based on a twisted dihedral group algebra, available at https://colab.research.google.com/drive/1FWcNYzNgZgSfMMBSXMq1nOCsowLzW-Ht?usp=sharing.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|