Abstract
<p style='text-indent:20px;'>Too few general constructions of Boolean functions satisfying all cryptographic criteria are known. We investigate the construction in which the support of <inline-formula><tex-math id="M1">\begin{document}$ f $\end{document}</tex-math></inline-formula> equals the image set of an injective vectorial function <inline-formula><tex-math id="M2">\begin{document}$ F $\end{document}</tex-math></inline-formula>, that we call a parameterization of <inline-formula><tex-math id="M3">\begin{document}$ f $\end{document}</tex-math></inline-formula>. Every balanced Boolean function can be obtained this way. We study five illustrations of this general construction. The three first correspond to known classes (Maiorana-McFarland, majority functions and balanced functions in odd numbers of variables with optimal algebraic immunity). The two last correspond to new classes:</p><p style='text-indent:20px;'>- the sums of indicators of disjoint graphs of <inline-formula><tex-math id="M4">\begin{document}$ (k,n-k $\end{document}</tex-math></inline-formula>)-functions,</p><p style='text-indent:20px;'>- functions parameterized through <inline-formula><tex-math id="M5">\begin{document}$ (n-1,n) $\end{document}</tex-math></inline-formula>-functions due to Beelen and Leander.</p><p style='text-indent:20px;'>We study the cryptographic parameters of balanced Boolean functions, according to those of their parameterizations: the algebraic degree of <inline-formula><tex-math id="M6">\begin{document}$ f $\end{document}</tex-math></inline-formula>, that we relate to the algebraic degrees of <inline-formula><tex-math id="M7">\begin{document}$ F $\end{document}</tex-math></inline-formula> and of its graph indicator, the nonlinearity of <inline-formula><tex-math id="M8">\begin{document}$ f $\end{document}</tex-math></inline-formula>, that we relate by a bound to the nonlinearity of <inline-formula><tex-math id="M9">\begin{document}$ F $\end{document}</tex-math></inline-formula>, and the algebraic immunity (AI), whose optimality is related to a natural question in linear algebra, and which may be approached (in two ways) by using the graph indicator of <inline-formula><tex-math id="M10">\begin{document}$ F $\end{document}</tex-math></inline-formula>. We revisit each of the five classes for each criterion. The fourth class is very promising, thanks to a lower bound on the nonlinearity by means of the nonlinearity of the chosen <inline-formula><tex-math id="M11">\begin{document}$ (k,n-k $\end{document}</tex-math></inline-formula>)-functions. The sub-class of the sums of indicators of affine functions, for which we prove an upper bound and a lower bound on the nonlinearity, seems also interesting. The fifth class includes functions with an optimal algebraic degree, good nonlinearity and good AI.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献