Finding small roots for bivariate polynomials over the ring of integers

Author:

Kim Jiseung1,Lee Changmin2

Affiliation:

1. 567 Baekje-daero, Deokjin-gu, Division of Computer Science and Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea

2. 85, Hoegi-ro, Dongdaemun-gu, Korea Institute for Advanced Study (KIAS), Seoul, 02455, Republic of Korea

Abstract

<p style='text-indent:20px;'>In this paper, we propose the first heuristic algorithm for finding small roots for a bivariate equation modulo an ideal <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{I} $\end{document}</tex-math></inline-formula> over the ring of integers <inline-formula><tex-math id="M4">\begin{document}$ \mathcal{R} $\end{document}</tex-math></inline-formula>. Existing algorithms for solving polynomial equations with size constraints only work for bivariate modular equations over integers, and univariate modular equation over number fields.</p><p style='text-indent:20px;'>Both previous algorithms use a relation between the short vector in a skillfully structured lattice and a size constrained solution. Our algorithm also follows this framework, but we additionally use a polynomial factoring algorithm over number fields to recover a 'ring' root of a bivariate polynomial equation.</p><p style='text-indent:20px;'>As a result, when an LLL algorithm is employed to find a short vector, we can recover all small roots of a bivariate polynomial modulo <inline-formula><tex-math id="M5">\begin{document}$ \mathcal{I} $\end{document}</tex-math></inline-formula> in polynomial time under some constraint.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3